
Ryan Somma

Week 7 Assignment

Using APA format, give short answers to the following:

1. What does a compiler do when it encounters data declarations in a source code file?

Data (manipulation) operations? Control structures?

When the compiler encounters a data declaration, it allocates sufficient memory to store

the data item based on the data type and number of bytes used to represent the data type

for the target CPU. For a data operation, the compiler translates the data operation

instructions into an equivalent sequence of data movement and data transformation

instructions for the target CPU. When the compiler encounters a control structure, it must

keep track of where CPU instructions for each source code instruction are located in

memory, and retrieve the proper memory address based on the condition.

2. Compare and contrast the execution of compiled programs to interpreted programs in

terms of CPU and memory utilization.

Interpreted programs require more memory and CPU instructions in execution. For

instance, Interpreted programs require memory for the interpreter, source code, and

executable code, while a compiled program only requires memory for the executable

code. Interpreted programs also consume CPU instructions for translation operations,

library linking, and the application program, while compiled programs only need CPU

instructions for the application program.

3. Compare and contrast the error detection and correction facilities of interpreters and

compilers.

Because the symbol table and program source code are always available to the interpreter

at runtime, interpreted languages can report the most recent source code line translated

along with the error, making them easier to debug than compiled languages. Compiled

programs, in contrast, require a symbolic debugger, which tests executable programs

using a symbol table, memory map, and source code files to track memory addresses to

their source code statements and variables. Debugging compiled programs involves

incorporating the symbolic debugger in a debugging version of the software, while an

interpreted program often has access to symbolic debugging capabilities via the

interpreter.

4. Describe the functions of the kernel, service, and command layers of the operating

system.

The command layer of the operating system is the user’s interface to the OS, either

textual or graphical. The command layer accepts keyboard or mouse clicks from the user,

which are translated into operating system commands. The service layer of the OS

contains the set of functions that are executed by the application programs and the

http://strayeronline.blackboard.com/webapps/blackboard/assignments/student/do_assignment.jsp?content_id=_540000_1&course_id=_13915_1&render_type=DEFAULT

command layer. The kernel manages resources and directly interacts with computer

hardware using device drivers, allocating and interacting with these resources for service

layer functions.

5. Describe the operation of virtual memory management.

Virtual memory management is a method operating systems use to minimize the amount

of process code and data stored in memory at any one time, which frees memory for other

processes. The method divides a program into partitions between one and four kilobytes

and memory into portions of the same size. During execution, processes are given one or

more portions of memory, with the rest of the program held in secondary storage. As

portions of code are executed, more code is loaded from secondary storage into memory

for execution. As code may reference memory addresses of programming code not

currently loaded into memory, virtual memory management keeps page tables to store

information about page locations. Because page sizes are fixed, memory references can

be converted to corresponding page number and offset with the page.

Virtual memory can get loaded down with too many swapping operations, either from

insufficient memory or poor programming, in a state known as thrashing (Hyde, 2001).

Randall Hyde, The Art of Assembly, Webster, 2001. Retrieved from the University of

California website on February 25, 2009:

http://webster.cs.ucr.edu/AoA/Windows/HTML/MemoryArchitecturea3.html

http://webster.cs.ucr.edu/AoA/Windows/HTML/MemoryArchitecturea3.html

